Redirection
Last updated on 2025-04-06 | Edit this page
Overview
Questions
- How can I search within files?
- How can I combine existing commands to do new things?
Objectives
- Employ the
grep
command to search for information within files. - Print the results of a command to a file.
- Construct command pipelines with two or more stages.
Searching files
We discussed in a previous episode how to search within a file using
less
. We can also search within files without even opening
them, using grep
. grep
is a command-line
utility for searching plain-text files for lines matching a specific set
of characters (sometimes called a string) or a particular pattern (which
can be specified using something called regular expressions). We’re not
going to work with regular expressions in this lesson, and are instead
going to specify the strings we are searching for. Let’s give it a
try!
Nucleotide abbreviations
The four nucleotides that appear in DNA are abbreviated
A
, C
, T
and G
.
Unknown nucleotides are represented with the letter N
. An
N
appearing in a sequencing file represents a position
where the sequencing machine was not able to confidently determine the
nucleotide in that position. You can think of an N
as being
aNy nucleotide at that position in the DNA sequence.
We’ll search for strings inside of our fastq files. Let’s first make sure we are in the correct directory.
OUTPUT
JC1A_R1.fastq JC1A_R2.fastq JP4D_R1.fastq JP4D_R2.fastq TruSeq3-PE.fa
Suppose we want to see how many reads in our file have really bad segments containing 10 consecutive unknown nucleotides (Ns).
Determining quality
In this lesson, we’re going to be manually searching for strings of
N
s within our sequence results to illustrate some
principles of file searching. It can be really useful to do this type of
searching to get a feel for the quality of your sequencing results,
however, in your research you will most likely use a bioinformatics tool
that has a built-in program for filtering out low-quality reads. You’ll
learn how to use one such tool in a
later lesson.
Let’s search for the string NNNNNNNNNN in the JC1A_R2.fastq file.
This command returns a lot of output to the terminal. Every single line in the JC1A_R2.fastq file that contains at least 10 consecutive Ns is printed to the terminal, regardless of how long or short the file is. We may be interested not only in the actual sequence which contains this string, but in the name (or identifier) of that sequence. We discussed in a previous lesson that the identifier line immediately precedes the nucleotide sequence for each read in a FASTQ file. We may also want to inspect the quality scores associated with each of these reads. To get all of this information, we will return the line immediately before each match and the two lines immediately after each match.
We can use the -B
argument for grep to return a specific
number of lines before each match. The -A
argument returns
a specific number of lines after each matching line. Here we want the
line before and the two lines after each matching
line, so we add -B1 -A2
to our grep command.
One of the sets of lines returned by this command is:
OUTPUT
@MISEQ-LAB244-W7:91:000000000-A5C7L:1:2111:5300:24013 2:N:0:TCGAAG
NNNNNNNNNNNCNANNANNNNNCGCCGGTGTTCTNCTGGGGNACGGANACCGAGTAGATCGGAACAGCGTCGTGGAGNGAAAGAGTGTAGATCCCGGTGGGCGGCGTATCATTAAAAAAAAAACCTGCTGGTCCTTGTCTC
+
AAA11BB3333BGG1GGEC1E?0E0B0BFDGFHD2FBH110A1BEE?A/BAFBDGH///>FEGGG><@/#//?#?/#//????########################################################################################################################################################################
Exercise 1: Using grep
Search for the sequence
GATCGAGAGGGGATAGGCG
in theJC1A_R2.fastq
file. Have your search return all matching lines and the name (or identifier) for each sequence that contains a match.Search for the sequence
AAGTT
in all FASTQ files. Have your search return all matching lines and the name (or identifier) for each sequence that contains a match.
’1.To search for the GATCGAGAGGGGATAGGCG sequence in the file JC1A_R2.fastq:
The output shows all of the lines that contain the sequence GATCGAGAGGGGATAGGCG. As the flag -B1 is used, it also shows the previous line to each occurence. In a FastQ file the identifier of each sequence is one line avobe the sequence itself, therefore in this example you can see the names and the sequences that match your query.
’2.To search for a sequence in all of the FastQ files you could use
the asterisk *
wildcard before the file extension
.fastq
:
$ grep -B1 AAGTT *.fastq
In this case, the lines with the sequence AAGTT are shown for all of the files that end with ‘.fastq’ in the current directory. The output shows the name of the file followed by semicolon to differentiate what file each line comes from.
Redirecting output
grep
allowed us to identify sequences in our FASTQ files
that match a particular pattern. All of these sequences were printed to
our terminal screen, but in order to work with these sequences and
perform other operations on them, we will need to capture that output in
some way.
We can do this with something called “redirection”. The idea is that we are taking what would ordinarily be printed to the terminal screen and redirecting it to another location. In our case, we want to print this information to a file so that we can look at it later and use other commands to analyze this data.
The command for redirecting output to a file is
>
.
Let’s try out this command and copy all the records (including all
four lines of each record) in our FASTQ files that contain ‘NNNNNNNNNN’
to another file called bad_reads.txt
.
The prompt should sit there a little bit, and then it should look
like nothing happened. But type ls
. You should see a new
file called bad_reads.txt
.
We can check the number of lines in our new file using a command
called wc
. wc
stands for word
count. This command counts the number of words, lines, and
characters in a file.
OUTPUT
402 489 50076 bad_reads.txt
This will tell us the number of lines, words and characters in the
file. If we want only the number of lines, we can use the
-l
flag for lines
.
OUTPUT
402 bad_reads.txt
Because we asked grep
for all four lines of each FASTQ
record, we need to divide the output by four to get the number of
sequences that match our search pattern.
Exercise 2: Using wc
How many sequences in JC1A_R2.fastq
contain at least 3
consecutive Ns?
Exercise 2: Using wc
(continued)
596 bad_reads.txt
{: .output}
We might want to search multiple FASTQ files for sequences that match
our search pattern. However, we need to be careful, because each time we
use the >
command to redirect output to a file, the new
output will replace the output that was already present in the file.
This is called “overwriting” and, just like you don’t want to overwrite
your video recording of your kid’s first birthday party, you also want
to avoid overwriting your data files.
OUTPUT
24 bad_reads.txt
The old bad_reads.txt
that counts bad quality reads from
file JC1A_R2.fastq
with 402 lines has been erased. Instead
a new bad_reads.txt
that contain 24 lines from bad reads
from JC1A_R1.fastq
has been created. We can avoid
overwriting our files by using the command >>
.
>>
is known as the “append redirect” and will append
new output to the end of a file, rather than overwriting it.
OUTPUT
402 bad_reads.txt
OUTPUT
426 bad_reads.txt
The output of our second call to wc
shows that we have
not overwritten our original data. The final number of 426 lines results
from the adition of 402 reads from JC1A_R2.fastq
file + 24
reads from JC1A_R1.fastq
file. We can also do this for more
files with a single line of code by using a wildcard.
OUTPUT
427 bad_reads.txt
Since we might have multiple different criteria we want to search
for, creating a new output file each time has the potential to clutter
up our workspace. We also so far haven’t been interested in the actual
contents of those files, only in the number of reads that we’ve found.
We created the files to store the reads and then counted the lines in
the file to see how many reads matched our criteria. There’s a way to do
this, however, that doesn’t require us to create these intermediate
files - the pipe command (|
).
This is probably not a key on your keyboard you use very much, so
let’s all take a minute to find that key. What |
does is
take the output that is scrolling by on the terminal and uses that
output as input to another command. When our output was scrolling by, we
might have wished we could slow it down and look at it, like we can with
less
. Well it turns out that we can! We can redirect our
output from our grep
call through the less
command.
We can now see the output from our grep
call within the
less
interface. We can use the up and down arrows to scroll
through the output and use q
to exit less
.
Redirecting output is often not intuitive, and can take some time to get used to. Once you’re comfortable with redirection, however, you’ll be able to combine any number of commands to do all sorts of exciting things with your data!
None of the command line programs we’ve been learning do anything all that impressive on their own, but when you start chaining them together, you can do some really powerful things very efficiently.
Writing for loops
Loops are key to productivity improvements through automation as they allow us to execute commands repeatedly. Similar to wildcards and tab completion, using loops also reduces the amount of typing (and typing mistakes). Loops are helpful when performing operations on groups of sequencing files, such as unzipping or trimming multiple files. We will use loops for these purposes in subsequent analyses, but will cover the basics of them for now.
When the shell sees the keyword for
, it knows to repeat
a command (or group of commands) once for each item in a list. Each time
the loop runs (called an iteration), an item in the list is assigned in
sequence to the variable, and the commands inside the
loop are executed, before moving on to the next item in the list. Inside
the loop, we call for the variable’s value by putting $
in
front of it. The $
tells the shell interpreter to treat the
variable as a variable name and substitute its value in
its place, rather than treat it as text or an external command. In shell
programming, this is usually called “expanding” the variable.
Let’s write a for loop to show us the first two lines of the fastq
files we downloaded earlier. You will notice shell prompt changes from
$
to >
and back again as we were typing in
our loop. The second prompt, >
, is different to remind
us that we haven’t finished typing a complete command yet. A semicolon,
;
, can be used to separate two commands written on a single
line.
To see the content of the little file we just made it is useful to
use the cat
command.
OUTPUT
@MISEQ-LAB244-W7:91:000000000-A5C7L:1:1101:13417:1998 1:N:0:TCGNAG
CTACGGCGCCATCGGCGNCCCCGGACGGTAGGAGACGGCGATGCTGGCCCTCGGCGCGGTCGCGTTCCTGAACCCCTGGCTGCTGGCGGCGCTCGCGGCGCTGCCGGTGCTCTGGGTGCTGCTGCGGGCGACGCCGCCGAGCCCGCGGCGGGTCGGATTCCCCGGCGTGCGCCCCCCGCTCCGGCTCGAGGACGCCGCACCGACGCCCCACCCCCCCCCCCGGTGGCTCCTCCTGCCGCCCTGCCTGATCC
@MISEQ-LAB244-W7:91:000000000-A5C7L:1:1101:13417:1998 2:N:0:TCGNAG
CGCGATCAGCAGCGGCCCGGAACCGGTCAGCCGCGCCNTGGGGTTCAGCACCGGCNNGGCGAAGGCCGCGATCGCGGCGGCGGCGATCAGGCAGCGCAGCAGCAGGAGCCACCAGGGCGTGCGGTCGGGCGTCCGTTCGGCGTCCTCGCGCCCCAGCAGCAGGCGCACGCCAGGGAATCCGACCCGCCGCCGGCTCGGCCGCGTCNCCCGCNCCCGCCCCCCGAGCACCCGNAGCCNCNCCACCGCCGCCC
@MISEQ-LAB244-W7:156:000000000-A80CV:1:1101:12622:2006 1:N:0:CTCAGA
CCCGTTCCTCGGGCGTGCAGTCGGGCTTGCGGTCTGCCATGTCGTGTTCGGCGTCGGTGGTGCCGATCAGGGTGAAATCCGTCTCGTAGGGGATCGCGAAGATGATCCGCCCGTCCGTGCCCTGAAAGAAATAGCACTTGTCAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCTCAGAATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAAAGCAAACCTCTCACTCCCTCTACTCTACTCCCTT
@MISEQ-LAB244-W7:156:000000000-A80CV:1:1101:12622:2006 2:N:0:CTCAGA
GACAAGTGCTATTTCTTTCAGGGCACGGACGGGCGGATCATCTTCGCGATCCCCTACGAGACGGATTTCACCCTGATCGGCACCACCGACGCCGAACACGACATGGCAGACCGCAAGCCCGACTGCACGCCCGAGGAACGGGAGATCGGAAGAGCGTCGTGTAGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATTAAAAAAAAAAAGCGATCAACTCGACCGACCTGTCTTATTATATCTCACGTAA
The for loop begins with the formula
for <variable> in <group to iterate over>
. In
this case, the word filename
is designated as the variable
to be used over each iteration. In our case JC1A_R1.fastq
and JC1A_R2.fastq
will be substituted for
filename
because they fit the pattern of ending with .fastq
in directory we’ve specified. The next line of the for loop is
do
. The next line is the code that we want to execute. We
are telling the loop to print the first two lines of each variable we
iterate over and save the information to a file. Finally, the word
done
ends the loop.
Note that we are using >>
to append the text to
our seq_info.txt
file. If we used >
, the
seq_info.txt
file would be rewritten every time the loop
iterates, so it would only have text from the last variable used.
Instead, >>
adds to the end of the file.
Using Basename in for loops
Basename is a function in UNIX that is helpful for removing a uniform
part of a name from a list of files. In this case, we will use basename
to remove the .fastq
extension from the files that we’ve
been working with.
We see that this returns just the SRR accession, and no longer has the .fastq file extension on it.
OUTPUT
JC1A_R2
If we try the same thing but use .fasta
as the file
extension instead, nothing happens. This is because basename only works
when it exactly matches a string in the file.
OUTPUT
JC1A_R2.fastq
Basename is really powerful when used in a for loop. It allows to access just the file prefix, which you can use to name things. Let’s try this.
Inside our for loop, we create a new name variable. We call the
basename function inside the parenthesis, then give our variable name
from the for loop, in this case ${filename}
, and finally
state that .fastq
should be removed from the file name.
It’s important to note that we’re not changing the actual files, we’re
creating a new variable called name. The line > echo $name will print
to the terminal the variable name each time the for loop runs. Because
we are iterating over two files, we expect to see two lines of
output.
OUTPUT
JC1A_R1
JC1A_R2
JP4D_R1
JP4D_R2
Exercise 3: Using basename
Print the file prefix of all of the .txt
files in our
current directory.
One way this is really useful is to move files. Let’s rename all of
our .txt files using mv
so that they have the years on
them, which will document when we created them.
BASH
$ for filename in *.txt
> do
> name=$(basename ${filename} .txt)
> mv ${filename} ${name}_2019.txt
> done
Key Points
-
grep
is a powerful search tool with many options for customization. -
>
,>>
, and|
are different ways of redirecting output. -
command > file
redirects a command’s output to a file. -
command >> file
redirects a command’s output to a file without overwriting the existing contents of the file. -
command_1 | command_2
redirects the output of the first command as input to the second command. - for loops are used for iteration
-
basename
gets rid of repetitive parts of names